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Nonlinear supersymmetric s model for scalar classical waves

B. Elattari,1,2 V. Kagalovsky,1 and H. A. Weidenmu¨ller1
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~Received 20 June 1997!

We derive a nonlinear supersymmetrics model for the transport of light~classical waves! through a
disordered medium. We compare this model with the well-established nonlinears model for the transport of
electrons~Schrödinger waves! and display similarities of and differences between both cases. We show that for
weak disorder both models are equivalent~have the same effective Lagrangian!. This effective Lagrangian
correctly reproduces the~different! Ward identities for Schro¨dinger waves and for classical waves.
@S1063-651X~98!04202-0#

PACS number~s!: 05.45.1b, 78.20.Bh
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I. INTRODUCTION AND MOTIVATION

In recent years, the transport of electrons and li
through disordered media has been studied intensely
many interesting effects have been observed and unders
Examples are universal conductance fluctuations and w
localization for electrons and speckle patterns and enhan
backscattering for light. A thorough discussion may be fou
in Refs.@1,2#. The universal tool to deal with these and oth
phenomena in the case of electrons has been Efetov’s su
symmetric nonlinears model~SUSIG! @3#. This model suc-
cessfully describes not only the perturbative effects m
tioned above but also nonperturbative features such
localization. It correctly accounts for both transport prop
ties and spectral fluctuations. Thus it is fair to say th
SUSIG embodies the essence of electronic properties of
ordered media. SUSIG so far has not been extended to
transmission of light through disordered media. In t
present paper, we aim at filling this gap. Our motivation
this work is the following.

The transmission of light through disordered media
commonly described in terms of the scalar wave equa
rather than a variant of Maxwell’s equations@2#. The scalar
wave equation differs in a fundamental way from the Sch¨-
dinger equation for electrons; see Sec. II. By the same to
the Ward identities for both equations differ substantially.
trying to extend SUSIG to the scalar wave equation,
probe the ability of the nonlinears model to provide a uni-
versal description of wave propagation in disordered syst
described by different wave equations. It is of interest to
in which way the difference in wave equations is reflected
the effective Lagrangian of the resulting SUSIG. We w
show that SUSIG does apply to the scalar wave equation
that Efetov’s effective Lagrangian is universal: It has t
same form for Schro¨dinger waves and for scalar waves. U
ing the replica trick, John and Stephen@4# derived a nonlin-
ear s model for classical waves. This derivation was co
fined, however, to waves at fixed energy and thus bypas
the crucial issue of correlations between amplitudes atdiffer-
ent energies. The latter play the central role in SUSIG.

The paper is organized as follows. In Sec. II we comp
the wave equations for electrons and classical waves
derive the simplest variant of the Ward identities for bo
571063-651X/98/57~3!/2733~6!/$15.00
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Section III describes the derivation of nonlinears model for
classical waves in the supersymmetric formalism. We co
pare our result with the analogous expression in Efeto
work @3#. Section IV is devoted to the derivation of the Wa
identities within a supersymmetric formalism for classic
waves. Our conclusions are presented in Sec. V.

II. WAVE EQUATIONS

We set the massm of the electron and Planck’s constant\
equal to unity. The Schro¨dinger equation for a noninteractin
electron

S 2
1

2
D1V~r ! Df5Ef ~1!

contains the random potentialV(r ), which describes impu-
rity scattering. The propagation of light is described by t
classical wave equation

@2D1k2de~r !#f5k2f. ~2!

Herek5v/c is the wave number. We have decomposed
space-dependent dielectric constante(r )512de(r ) into a
space-independent background term~which we set equal to
1) and a fluctuating partde(r ). We assume thatde is a
Gaussian random process with vanishing first moment an
second moment given by

^de~r1!de~r2!&5
4p

l kd11
d~r12r2!, ~3!

wherel is the elastic mean free path andd is the dimension
of the system. We have written Eq.~3! in complete analogy
to the case of electrons.

We compare Eqs.~1! and ~2!. Aside from a factor 2, the
quantityk2 corresponds formally to the energyE. However,
k2 is always positive, in contradistinction toE. The main
difference between Eqs.~1! and~2! lies in the energy depen
dence of the random potential in the classical case. WhilV
is independent of energy, the analogous term;de is not.
This difference is also reflected in different Ward identiti
2733 © 1998 The American Physical Society
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2734 57B. ELATTARI, V. KAGALOVSKY, AND H. A. WEIDENMÜ LLER
that relate averaged one- and two-point functions. For e
trons, the retarded~advanced! Green’s function

Ge
65~E66z1D/22V!21 ~4!

is taken at energiesE11z5E1z1 ih and E22z5E2z
2 ih, respectively. We immediately find

^Ge
1&2^Ge

2&522~z1 ih!^Ge
1Ge

2&, ~5!

where the angular brackets stand for the ensemble ave
In complete analogy, we define the Green’s functions
classical waves by

Gc
65F S k0

266
Dk2

2 D1D2S k0
26

Dk2

2 D deG21

. ~6!

The Ward identity reads

^Gc
1&2^Gc

2&522S Dk2

2
1 ih D ^Gc

1Gc
2&1Dk2^Gc

1deGc
2&.

~7!

Because of the frequency dependence of the impurity term
the classical case, these two Ward identities differ in fo
They actually also indicate different conservation laws: p
ticle conservation for electrons and energy conservation
classical waves. The Ward identity for the classical case
serve as a check of our supersymmetric formalism: In S
IV we derive it from the nonlinears model.

III. NONLINEAR s MODEL

We derive the nonlinears model for the simplest non
trivial case: the ensemble average of a product of an
vanced and a retarded Green’s function. We use the nota
and definitions of Ref.@5#. The advanced and retarde
Green’s functions can be written as integrals over superv
tors

G6~y1 ,y2 ,k2!57
i

2E D@C#Cn~y1!Cn
†~y2!exp@L~C!#,

~8!

where we have omitted the indexc for the Green’s function
of classical waves and the Lagrangian is given by

L5
1

2
i E ddy„C†~y!$6@k21D2de~y!k2#1 ih%C~y!….

~9!

The quantitiesC(x) are supervectors defined by

C~x!†5„S1~x!,S2~x!,2x~x!,x* ~x!…. ~10!

The quantitiesS are ordinary real integration variables an
the x ’s anticommute. We introduce a source termJ(y)
5diag@ j (y),0,0,0# in graded space and introduce the gen
ating functional

Z6~k2,J!5E D@C#expFL1
1

2
i E ddy@C†~y!J~y!C~y!#G .

~11!
c-
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This functional generates the Green’s function at the po
y15y2, which is sufficient, because in the present section
are interested only in the effective action. In Sec. IV w
show how to generate the Green’s function with differe
space point arguments. The Green’s function is given
functional derivative of the generating functional with r
spect toJ at J50,

G6~y,y!57
]Z6

] j ~y!
. ~12!

We use this expression to calculate the average of the p
uct of a retarded and an advanced Green’s function take
different frequencieŝG1G2& ~the two-point function!. This
quantity plays an important role in describing average pr
erties of random systems, such as the level-level correla
function and the distribution function of the transmission.
serves as an example. Except for the dimension of theQ
matrices appearing below and the dependence on additi
frequency variables, the average 2k-point function for any
positive integerk is governed by an effective Lagrangian
the same type.

The generating functionalZ for the two-point function is
given by

Z~k2,Dk2,J!5E D@C#expS 1

2
i E ddyFC†~y!L1/2

3H k0
21

Dk2

2
L1D2de~y!S k0

21
Dk2

2
L D

1 ihL1J~y!J L1/2C~y!G D , ~13!

whereL5diag(1,1,1,1,21,21,21,21), C are supervectors
with eight components, andJ is an 838 matrix. All quanti-
ties are given in ‘‘advanced-retarded’’ notation~see Ref.
@5#!. Averaging over the Gaussian distribution ofde, we ob-
tain the Lagrangian

L5
1

2
i E ddyH C†~y!L1/2S k0

21
Dk2

2
L1D1 ihL DL1/2C~y!

2
p

2k0
d23

l
FC†~y!L1/2S 11

Dk2

2k0
2

L D L1/2C~y!G 2J . ~14!

Using the Hubbard-Stratonovich transformation in the us
way and integrating over the vectorsC, we obtain the fol-
lowing form of the generating functional:

Z̄5E DQexpS E ddyH 2
pn

8t
trgQ21

1

2
trglnF k0

21
Dk2

2
L

1D1 ihL1J~y!2
1

2t
QS 11

Dk2

2k0
2

L D G J D . ~15!

Heren is the density of states per unit ofk0
2 and per unit of

volume andt5k0
d23

l /2p2n formally corresponds to Efe
tov’s mean free time@3#. We have introduced these quan
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57 2735NONLINEAR SUPERSYMMETRICs MODEL FOR SCALAR . . .
ties in Eq.~15! in order to facilitate the direct comparison
Efetov’s expression for electrons. The ter
(1/2t)QL(Dk2/2k0

2) is due to the frequency dependence
the ‘‘scattering potential’’k2de in Eq. ~2!. Comparing Eq.
~15! with the corresponding expression in Efetov’s work@3#,
we identify ~modulo factors of 2! e0k0

2 with the sum energy
ande0Dk2 with the energy difference and find that the tw
expressions differ by the term(1/2t)QL(Dk2/2k0

2).
To evaluate Eq.~15!, we use the saddle-point approxim

tion. This is justified ift!r, the mean level density. Varyin
the Lagrangian in Eq.~15! with respect toQ and neglecting
terms proportional toDk2 and source terms, we obtain th
standard saddle-point equation

Q5
1

pr
trFk0

21D2
1

2t
QG21

. ~16!

This is the same equation as in the case of electrons. A
that case, the conditionk0l @1 ~weak disorder! yields Q
5 iL as a solution of the saddle-point equation. The we
disorder condition also implies, however, that the te
(1/2t)QL(Dk2/2k0

2) in Eq. ~15! can be neglected. This i
the case for sufficiently largek0. Then,there is no difference
between the nonlinears models for Schro¨dinger waves and
for classical waves. This statement is the central result of o
work. It obviously extends to the generating functionals
all higher correlation functions and thus applies universa

The actual differences between the two theories are du
the different forms of the source terms. In the next sect
we show this in the case of the Ward identities.

IV. WARD IDENTITY

In Appendix G of Ref.@5#, it was shown how a Ward
identity can be derived in the context of SUSIG. We use t
method to check the Ward identity~7! for classical waves,
using essentially the generating functional derived in the p
ceding section. With slight modifications, our calculati
also applies to the case of electrons. We first show how
new source terms emerge, when we introduce a new ge
ating functional for the right-hand side~rhs! of Eq. ~7!. We
use the coordinate representation

^r uG1~12de!G2ur 8&

5E ddx G1~x,r !@12de~x!#G2~r 8,x!. ~17!

The generating functional

Z1~k2,Dk2,J1!52E D@C1#expH i

2E ddy C1
†~y!Fk0

21
Dk2

2

1D2de~y!S k0
21

Dk2

2 D1 ihGC1~y!

1
i

2E E ddy ddy8C1
†~y!J1~y,y8!C1~y8!J

~18!

produces the retarded Green’s function on the rhs of
~17!:
f

in

k

f
.
to
n

t

-

e
er-

q.

G1~x,r !5
]Z1

] j 1~r ,x!
, ~19!

where the source termJ15diag(j 1,0,0,0) is set equal to zero
after taking the derivative, whileC1 is a supervector with
four components. We also introduce another genera
functional

Z2~k2,Dk2, J̃ !

52E D@C2#expH 2
i

2E ddy C2
†~y!Fk0

22
Dk2

2

1D2de~y!S k0
22

Dk2

2 D2 ih GC2~y!

2
i

2E E ddy ddy8C2
†~y!

3@12de~y!# J̃ ~y,y8!C2~y8!J . ~20!

Then, immediately

@12de~x!#G2~r 8,x!5
]Z2

] j 2~x,r 8!
. ~21!

Taking the product of Eqs.~18! and ~20!, we obtain a gen-
erating functional

Zf5E D@C#expF i

2
Lf G , ~22!

where the action is given by

Lf5E E ddy ddy8C†~y!L1/2H Fk0
21

Dk2

2
L1D

2de~y!S k0
21

Dk2

2
L D1 ihLGd~y2y8!1J~y,y8!

2de~y8! J̃ ~y,y8!J L1/2C~y8!, ~23!

with J̃5diag(0,0,0,0,j 2,0,0,0) and J5diag
( j 1,0,0,0,j 2,0,0,0). The second partial derivatives ofZf pro-
duce the integrands on the rhs of Eq.~7!. The additional
source termJ̃ (y,y8) represents the important difference
the electron case. Averaging of the term containing the r
dom part of the dielectric constantde(y) leads to

expF2
1

16pntk0
4E E E ddy ddy8ddy18C

†~y!

3L1/2A~y,y8!L1/2C~y8!C†~y!L1/2A~y,y18!L1/2C~y18!G ,

~24!

where

A~y,y8!5Fk0
21

Dk2

2
LGd~y2y8!1 J̃ ~y,y8!. ~25!
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To perform the Hubbard-Stratonovich transformation we
troduce a supervector

F~y!5E ddy8A~y,y8!L1/2C~y8!, ~26!

after which we can rewrite the expression in Eq.~24! as

expF2
1

16pntk0
4E ddy@C†~y!L1/2F~y!#2G . ~27!

Using the Hubbard-Stratonovich transformation and keep
only diffusive modes, we obtain the average of Eq.~22!

Zf̄5E D@C#expF2E ddy
pn

8t
trgQ22

1

2
ln DetgB~Q!G

[E D@Q#exp@2Li~Q!#, ~28!

where Detg means determinant over real and graded spa
and we define a matrix

B~Q!5S Fk0
21

Dk2

2
L1D1 ihLGd~y2y8!1J~y,y8!

2
1

2tk0
2

Q~y…A„y,y8!D . ~29!

For maximum compactness we allowJ and J̃ to be gen-
eral symmetric 838 matrices. This is permissible becau
we never use the particular form of the source term in
derivation in Sec. III. The saddle-point equation for th
action is the same as before. Following the formali
developed in Ref. @5#, we apply the transformation
Q→(11dT)21Q(11dT) ~we preserve the notation of Re
@5#!, changing the action in Eq.~28! into

Li1
1

2
TrgB21~Q!H FdT,S Dk2

2
L1 ihL D d~y2y8!1J~y,y8!G

2
1

2t
Q~y!S dT,

Dk2

2k0
2

Ld~y2y8!1
J̃ ~y,y8!

k0
2 D J , ~30!

where Trg is the trace in both real and graded spaces
transformation of integration variables leavesZf̄ invariant.
-

g

es

e

A

Therefore, terms linear indT in the expression ofZf̄ must
vanish, which leads to the equation

E D@Q#exp~2Li !TrgB21~Q!@dT,J#

1E D@Q#exp~2Li !TrgB21~Q!

3FdT,S Dk2

2
1 ih DLd~y2y8!G

2
1

2tk0
2E D@Q#exp~2Li !TrgB21~Q!Q

3H dT,F S Dk2

2
Ld~y2y8!1 J̃ ~y,y8! D G J 50. ~31!

We will consider each of these terms in detail. The first te
is

E D@Q#exp~2Li !Trg@B21~y,y8!#ab@dT,J#y,y8
ab

5(
ab

E E ddy ddy8E D@Q#exp~2Li !Bab
21~Q!

3@dT,J#ba

5(
kk8

E E ddy ddy8
]Zf̄~k0

2 ,Dk2,J!

]Jkk8
~1,1!

~y8,y!
@dT~1,2!J~2,1!

2J~1,2!dT~2,1!#y8,y
kk8

1(
kk8

E E ddy8ddy
]Zf̄~k0

2 ,Dk2,J!

]Jkk8
~2,2!

~y8,y!
@dT~2,1!J~1,2!

2J~2,1!dT~1,2!#y8,y
kk8 1•••, ~32!

where we use block notation as in Ref.@5#. The dots repre-
sent terms containingJ(1,1) andJ(2,2) that do not contrib-
ute to the final result. Using the explicit expressionsdTkk8

1,2

5 idkk0
dk8k

08
, dTkk8

2,1
52 idkk

08
dk8k0

, the first term can be writ-

ten as
i(
k8

E E ddy ddy8
]Zf̄~k0

2 ,Dk2,J!

]Jk0k8
~1,1!

~y8,y!
Jk

08k8
~2,1!

~y8,y!

1 i(
k
E E ddy ddy8

]Zf̄~k0
2 ,Dk2,J!

]Jkk0

~1,1!~y8,y!
Jkk

08
~1,2!

~y8,y!2 i(
k8

E E ddy ddy8
]Zf̄~k0

2 ,Dk2,J!

]Jk
08k8

~2,2!
~y8,y!

Jk0k8
~1,2!

~y8,y!

2 i(
k
E E ddy ddy8

]Zf̄~k0
2 ,Dk2,J!

]Jkk
08

~2,2!
~y8,y!

Jkk0

~2,1!~y8,y!1••• . ~33!
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Now taking the derivative with respect toJ11
(1,2)(x,x8), we finally obtain

2i
]Zf̄~k0

2 ,Dk2,J!

]J1k0

~1,1!~x,x8! U
J, J̃50

d1k
08
22i

]Zf̄~k0
2 ,Dk2,J!

]Jk
081

~2,2!
~x,x8! U

J, J̃50

d1k0
. ~34!

We consider now the second term in Eq.~31!,

E D@Q#exp~2Li !TrgB21~Q!FdT,S Dk2

2
L1 ihL D d~y2y8!G522S Dk2

2
1 ih D (

k,k8
E E ddy ddy8

]Zf̄~k0
2 ,Dk2,J!

]Jkk8
~1,2!

~y8,y!

3dTkk8~1,2!d~y2y8!12S Dk2

2
1 ih D (

k,k8
E E ddy ddy8

]Zf̄~k0
2 ,Dk2,J!

]Jkk8
~2,1!

~y8,y!
dTkk8~2,1!d~y2y8!

522i S Dk2

2
1 ih D E ddy

]Zf̄~k0
2 ,Dk2,J!

]Jk0k
08

~1,2!
~y,y!

22i S Dk2

2
1 ih D E ddy

]Zf̄~k0
2 ,Dk2,J!

]Jk
08k0

~2,1!
~y,y!

. ~35!
t
e-

n
-

The derivative with respect toJ11
(1,2)(x,x8) leads to

22i S Dk2

2
1 ih D S E ddy

]2Zf̄~k0
2 ,Dk2,J!

]Jk0k
08

~1,2!
~y,y!]J11

~1,2!~x,x8!U
J, J̃50

1E ddy
]2Zf̄~k0

2 ,Dk2,J!

]Jk
08k0

~2,1!
~y,y!]J11

~1,2!~x,x8!U
J, J̃50

D . ~36!

We expand the remaining term in Eq.~31!,

2
1

2tk0
2E D@Q#exp~2Li !TrgB21~Q!Q

3FdT,S Dk2

2
Ld~y2y8!1 J̃ ~y,y8! D G

5(
a,b

E ddy
]Zf̄~k0

2 ,Dk2,J!

] J̃ab~y,y!
FdT,

Dk2

2
LG

y,y8

ab

52 iDk2E ddy
]Zf̄~k0

2 ,Dk2,J!

] J̃ k0k
08

~1,2!
~y,y!

2 iDk2E ddy
]Zf̄~k0

2 ,Dk2,J!

] J̃ k
08k0

~2,1!
~y,y!

. ~37!

The term proportional toJ̃ is omitted because it does no
contribute to the final result. Taking the derivative with r
spect toJ1,1

(1,2) , we find
2 iDk2E ddy
]2Zf̄~k0

2 ,Dk2,J!

] J̃ k0k
08

~1,2!
~y,y!J11

~1,2!~x,x8!U
J, J̃50

2 iDk2E ddy
]2Zf̄~k0

2 ,Dk2,J!

] J̃ k
08k0

~2,1!
~y,y!J11

~1,2!~x,x8!U
J, J̃50

. ~38!

In conclusion, the requirement that the term linear indT in
the expansion ofZf̄ vanishes entails the equation

2
]Zf̄~k0

2 ,Dk2,J!

]J1k0

~1,1!~x,x8! U
J, J̃50

d1k
08
22

]Zf̄~k0
2 ,Dk2,J!

]Jk
081

~2,2!
~x,x8! U

J, J̃50

d1k0

52S Dk2

2
1 ih D E ddy

]2Zf̄~k0
2 ,Dk2,J!

]Jk
08k0

~2,1!
~y,y!]J11

~1,2!~x,x8!U
J, J̃50

12i S Dk2

2
1 ih D E ddy

]2Zf̄~k0
2 ,Dk2,J!

]Jk0k
08

~1,2!
~y,y!]J11

~1,2!~x,x8!U
J, J̃50

1Dk2E ddy
]2Zf̄~k0

2 ,Dk2,J!

] J̃ k0k
08
~1,2!~y,y!J11

~1,2!~x,x8!U
J, J̃50

1Dk2E ddy
]2Zf̄~k0

2 ,Dk2,J!

] J̃ k
08k

0
~2,1!~y,y!J11

~1,2!~x,x8!U
J, J̃50

. ~39!

ReplacingZf̄ everywhere byZ, using the definition ofZ, and
settingk05k0851, we immediately obtain a Ward identity i
the form of Eq.~7!. Indeed, Eq.~34! corresponds to the left
hand side of Eq.~7!, whereas Eqs.~36! and ~38! lead to the
rhs of Eq.~7!.
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V. CONCLUSIONS

We have derived a nonlinear supersymmetrics model for
classical scalar waves. We have shown that in the weak
order limit (k0l @1), the effective Lagrangian of this mode
is identical to the one for electrons. In this limit, the ma
difference between the wave equations for classical
Schrödinger waves, the frequency dependence of the rand
potential, does not lead to different wave behavior. We h
also shown that the Ward identities for classical and
Schrödinger waves are both fulfilled by the same effecti
Lagrangian. This is due to the different source terms. Outs
the regime of weak disorder, i.e., at low frequencies,
l

is-

d
m
e
r

e
e

frequency dependence of the disorder potential for class
waves suppresses disorder effects altogether. This does
happen for electrons. This low-frequency domain is not
cessible to the nonlinears model.
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