PHYSICAL REVIEW E VOLUME 57, NUMBER 3 MARCH 1998

Nonlinear supersymmetric o model for scalar classical waves
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We derive a nonlinear supersymmetiac model for the transport of lighfclassical wavesthrough a
disordered medium. We compare this model with the well-established nonlineaxrdel for the transport of
electrongSchralinger wavesand display similarities of and differences between both cases. We show that for
weak disorder both models are equivalénave the same effective Lagrangiaithis effective Lagrangian
correctly reproduces th@lifferent Ward identities for Schidinger waves and for classical waves.
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I. INTRODUCTION AND MOTIVATION Section Il describes the derivation of nonlineamodel for
classical waves in the supersymmetric formalism. We com-
In recent years, the transport of electrons and lightare our result with the analogous expression in Efetov's
through disordered media has been studied intensely arwork [3]. Section IV is devoted to the derivation of the Ward
many interesting effects have been observed and understodélentities within a supersymmetric formalism for classical
Examples are universal conductance fluctuations and weakaves. Our conclusions are presented in Sec. V.
localization for electrons and speckle patterns and enhanced
backscattering for light. A thorough discussion may be found Il. WAVE EQUATIONS
in Refs.[1,2]. The universal tool to deal with these and other
phenomena in the case of electrons has been Efetov’s super- We set the mass of the electron and Planck’s constant
symmetric nonlineas- model (SUSIG [3]. This model suc- equal to unity. The Schdinger equation for a noninteracting
cessfully describes not only the perturbative effects menglectron
tioned above but also nonperturbative features such as L
localization. It correctly accounts for both transport proper- _
ties and spectral fluctuations. Thus it is fair to say that (—§A+V(r))¢—E¢ @
SUSIG embodies the essence of electronic properties of dis-
ordered media. SUSIG so far has not been extended to thsdntains the random potentisi(r), which describes impu-
transmission of light through disordered media. In therity scattering. The propagation of light is described by the
present paper, we aim at filling this gap. Our motivation forclassical wave equation
this work is the following.
The transmission of light through disordered media is [—A+Kk28e(r)]p=k2o. 2
commonly described in terms of the scalar wave equation
rather than a variant of Maxwell’'s equatiof. The scalar Herek=w/c is the wave number. We have decomposed the
wave equation differs in a fundamental way from the Sehro space-dependent dielectric constafit)=1— Se(r) into a
dinger equation for electrons; see Sec. . By the same tokerpace-independent background tefwhich we set equal to
the Ward identities for both equations differ substantially. In1) and a fluctuating parbe(r). We assume thabe is a
trying to extend SUSIG to the scalar wave equation, WeGaussian random process with vanishing first moment and a
probe the ability of the nonlinear model to provide a uni-  second moment given by
versal description of wave propagation in disordered systems
described by different wave equations. It is of interest to see
in which way the difference in wave equations is reflected in (Se(ry) 0e(ry))=
the effective Lagrangian of the resulting SUSIG. We will
show that SUSIG does apply to the scalar wave equation and
that Efetov’s effective Lagrangian is universal: It has thewhere/ is the elastic mean free path adds the dimension
same form for Schidinger waves and for scalar waves. Us- of the system. We have written E) in complete analogy
ing the replica trick, John and Stephg#] derived a nonlin-  to the case of electrons.
ear o model for classical waves. This derivation was con- We compare Eqg1) and(2). Aside from a factor 2, the
fined, however, to waves at fixed energy and thus bypasseguantityk® corresponds formally to the energy However,
the crucial issue of correlations between amplitudegiffér- ~ k? is always positive, in contradistinction . The main
entenergies. The latter play the central role in SUSIG. difference between Eqgl) and(2) lies in the energy depen-
The paper is organized as follows. In Sec. Il we comparalence of the random potential in the classical case. While
the wave equations for electrons and classical waves and independent of energy, the analogous tetréie is not.
derive the simplest variant of the Ward identities for both.This difference is also reflected in different Ward identities
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that relate averaged one- and two-point functions. For elecFhis functional generates the Green’s function at the point

trons, the retardetadvancetl Green'’s function y1=Y,, Which is sufficient, because in the present section we
. . . are interested only in the effective action. In Sec. IV we
Ge =(E"*z+A/2-V) (40 show how to generate the Green’s function with different

) N ) 3 space point arguments. The Green’s function is given as
is taken at energie& " +z=E+z+in andE"—z=E-Z  fnctional derivative of the generating functional with re-

—in, respectively. We immediately find spect toJ atJ=0,
(Ge)—(Ge)=—2(z+in)(G¢Ge), ®) . 9zZ*
G yy) =5 (12
where the angular brackets stand for the ensemble average. 1(y)

In complete analogy, we define the Green’s functions fo

) 'We use this expression to calculate the average of the prod-
classical waves by

uct of a retarded and an advanced Green'’s function taken at
-1 different frequencie$G* G ™) (the two-point functioh This
(6) guantity plays an important role in describing average prop-
erties of random systems, such as the level-level correlation
function and the distribution function of the transmission. It
serves as an example. Except for the dimension ofQhe
matrices appearing below and the dependence on additional
(GIG.)+AK* G 8eG_). frequency variables, the averagg&-goint function for any
@ positive integek is governed by an effective Lagrangian of
the same type.
Because of the frequency dependence of the impurity term in  The generating functional for the two-point function is
the classical case, these two Ward identities differ in formgiven by
They actually also indicate different conservation laws: par- 1
ticle conservation for electrons and energy conservation for 2 AL2 1\ L. d + 1/2
classical waves. The Ward identity for the classical case will 2(k% Ak 'J)_f D[W]eXF{ZIJ d y[\l’ (YL
serve as a check of our supersymmetric formalism: In Sec.

The Ward identity reads

A 2
(@)-(60)=-2| 5-+in

oo . Ak? Ak?
IV we derive it from the nonlineas- model. « k§+TL+A— Se(y) kSJr TL)
IIl. NONLINEAR o MODEL
H 1/2
We derive the nonlineas- model for the simplest non- i 77L+J(y)]L \P(y)})’ (13

trivial case: the ensemble average of a product of an ad- _
vanced and a retarded Green’s function. We use the notationghereL =diag(1,1,1,1--1,—1,-1,— 1), ¥ are supervectors
and definitions of Ref[5]. The advanced and retarded with eight components, andlis an 8<8 matrix. All quanti-

Green’s functions can be written as integrals over supervedies are given in “advanced-retarded” notatidgeee Ref.
tors [5]). Averaging over the Gaussian distribution &4, we ob-

tain the Lagrangian

2

i
Gi(yl,yz,k2)=1§f DLWV, (y) W (v exd L(¥)], Ak
kS+TL+A+i nL)Ll’Z\If(y)

(8) L= %I J' ddy{ \I,T(y)LIIZ

where we have omitted the indexfor the Green'’s function - AK2 2
of classical waves and the Lagrangian is given by — viy)LY 1+ —L | LY2p . (14
K3, (y) 2K (y) (14
1 .
L= E'J AUy (T (y){ £ [K2+ A~ Se(y)k]+in} W (y)). Using the Hubbard-Stratonovich transformation in the usual

(9 way and integrating over the vectods, we obtain the fol-
lowing form of the generating functional:

The quantities¥ (x) are supervectors defined by

2

, Ak

W (x)T=(SH(x),S7(x), = x (%), x* (x)). (10

_ Y 1
Z=f DQexp( f ddy[ —8—trgQ2+ Strgin
The quantitiesS are ordinary real integration variables and 4
the x’s anticommute. We introduce a source tetiy)

2
=diad j(y),0,0,0 in graded space and introduce the gener- +A+i 77L+J(y)_iQ 1+ ﬂ L ] (15)
ating functional 27 2k

1 Here v is the density of states per unit bg and per unit of
*1,2 _ - d T
27k ’J)_f D[\If]exp{ﬁJr 2',[ dylw (y)J(y)\If(y)]}. volume andr= kg‘3/‘/2w2u formally corresponds to Efe-
(11 tov’'s mean free timg3]. We have introduced these quanti-
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ties in Eq.(15) in order to facilitate the direct comparison to 9Z,
Efetov's  expression for electrons. The term G (x,r)= %)’
(1/27)QL(Ak2/2k§) is due to the frequency dependence of Jath
the “scattering potential’k?de in Eq. (2). Comparing Eq. where the source terdh =diag(j;,0,0,0) is set equal to zero
(15) with the corresponding expression in Efetov's wgBk ~ after taking the derivative, whil&d; is a supervector with
we identify (modulo factors of 2 5k3 with the sum energy four components. We also introduce another generating
and e,Ak? with the energy difference and find that the two functional
expressions differ by the ten(ri/ZT)QL(AKZIZkS). 2 Ar2 S

To evaluate Eq(15), we use the saddle-point approxima- Z,(k%,Ak%,J)
tion. This is justified ifr<p, the mean level density. Varying i AK2
the Lagrangian in Eq.15) with respect taQ and neglecting = _f D[‘I’z]eXDr — _f ddy \PZ(y)[kS——
terms proportional ta\k? and source terms, we obtain the 2 2
standard saddle-point equation

(19

, AkZ)
1 +A—de(y)| ko~ —— | —in|Valy)

(16)

k2+ A !
0 ZTQ

1
Q= —tr
e Ifjdd dd,‘I’T()
This is the same equation as in the case of electrons. As in 2 yay Ty
that case, the conditioky/>1 (weak disorder yields Q
=iL as a solution of the saddle-point equation. The weak x[l—&e(y)]f]'(y,y’)‘lfz(y’)J. (20)
disorder condition also implies, however, that the term
(1/27)QL(AK?/2k3) in Eq. (15) can be neglected. This is Then, immediately
the case for sufficiently large,. Then,there is no difference ’

between the nonlineas models for Schidinger waves and - 9Z,
for classical wavesThis statement is the central result of our [1-0e(x) ]G (I X)=——. (21
work. It obviously extends to the generating functionals of dJ2(X.1")

all higher correlation functions and thus applies universally Taking the product of Eqg18) and (20), we obtain a gen-
The actual differences between the two theories are due tgyating functional

the different forms of the source terms. In the next section _
we show this in the case of the Ward identities. Zf:J’ D[\If]exp{lzﬁf}, 22
IV. WARD IDENTITY
where the action is given by
In Appendix G of Ref.[5], it was shown how a Ward
identity can be derived in the context of SUSIG. We use that r :f fdd e ’\If*( )L 2
method to check the Ward identity) for classical waves, f yay y
using essentially the generating functional derived in the pre-
ceding section. With slight modifications, our calculation — Se(y)
also applies to the case of electrons. We first show how the
new source terms emerge, when we introduce a new gener-
ating functional for the right-hand sidehs) of Eq. (7). We _ 5€(y/)j(y,yr)] LY2g(y'), (23)
use the coordinate representation

, AK?
kg+—-L+A

2

L Ak
k0+TL

+i nL} o(y—y")+I(y.y")

(r|G*(1—6€)G|r") with J=diag(0,0,0,,,0,0,0) and  J=diag
(j1,0,0,0j,,0,0,0). The second partial derivatives&f pro-
duce the integrands on the rhs of E@). The additional
source termJ(y,y’) represents the important difference to
the electron case. Averaging of the term containing the ran-
dom part of the dielectric constank(y) leads to

=f di% G*(x,n)[1—8e(x)]G(r',X). (17

The generating functional

2

k3+_A ! J j f dy gdy’ qdy/ gt
2 exg ——— d% d%’d%; ¥
167TV7'|(3 y y yl (Y)

2,(,8k2.9) = - | D[\Ifﬂexp{'i [ ay vl

Ak2
+A—be(y)| Ko+ ——| +in|Py(y)
2 XLY2A(y,y" ) LY2W (y )W T (y) LY2A(y,y) LYW (y)) |,
i
+5 f f ddy ddy'\vky)Jl(y,y')\Ifl(y')] (24)

(18) where

2

produces the retarded Green’s function on the rhs of Eq. k2+A—L}5(y—y’)+3(y y') (25)
0 2 ’ ’

(17): Aly.y')=
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To perform the Hubbard-Stratonovich transformation we |n'Therefore terms linear i®T in the express|0n OZf must
troduce a supervector vanish, which leads to the equation

— dy,’ ’ / ’

after which we can rewrite the expression in E24) as

+| D —L;)TrgB™?

exr{—%f ddy[\IfT(y)Ll’ZF(y)]zl. o f [Qlexp(— L) TrgB™*(Q)
16mv7k, K2

X 5T,(T+i77

Using the Hubbard-Stratonovich transformation and keeping Loly-y )}

only diffusive modes, we obtain the average of E2P)

_ - 1 f D[Qlexp —£)TrgB~1(Q)Q
Zf=JD[\If]ex —J ddygtrng—Eln DetgB(Q) 2 7kG
xiST (AkzLé( )+ J( ')> } 0. (3)
| T y-y Y,y =Vv.
EJ D[Qlexd — £i(Q)], (28) 2
where Defj means determinant over real and graded Spacewe will consider each of these terms in detail. The first term
and we define a matrix is
2 Akz ; ’ ’ -1 r\y1aB apB
B(Q)={ |kot -L+A+inLidoly—y)+I(yy') DIQIexp(— L) Trg[B~(y,y") ]*[ 6T, ],y
— d dy,’ _ . -1
— T QWAWY) |- (29 2 f f dy dy f PLQJexp(= £)Bas(Q)
27kg
_ X[ 6T,J]P
For maximum compactness we allavand J to be gen- )
eral symmetric &8 matrices. This is permissible because ddy ddy’ 9Z(k5,AK?,J) 123(2.1
we never use the particular form of the source term in the kk, y J<1/1( y) Do o OT(1.23(2.D)
derivation in Sec. Ill. The saddle-point equation for this kk ’
action is the same as before. Following the formalism ~J(1,2)8T(2 mkk/
developed in Ref.[5], we apply the transformation ’
Q—(1+ 5T_)‘1Q(1+ 5_T) (We preserve the notation of Ref. 9z kg, AK2,J)
[5]), changing the action in Eq28) into j f ddy’ddy —y o L6T(2,93(1,2)
kk' Jkk’ ( ! )
i Ak , , ,
Li+ 5TrgB H(Q)) | 6T, | —-L+inL |s(y—y) +I(y.y") —3(2)8T(L2 -, (32
1 AK? j(y y') where we use block notation as in RE5]. The dots repre-
—5,QW) ﬂ,%Lé(y—y’H 2 : (300 sent terms containing(1,1) andJ(2,2) that do not contrib-
0 0

ute to the final result. Using the explicit expressidi&if,
where Tpg is the trace in both real and graded spaces. A= ik, S’k 5Tii<l/=—i5kk65kfko, the first term can be writ-
transformation of integration variables IeavIés invariant.  ten as

| 9Z(k5,AK?,J)
) (21
ded dd Ty I (YY)
Kok’

| 9Z4 Z(k3,AK?,J) aZf(kz,Akz J)
3 [ [ aryay 2wy | [ayay 20y
Yy % e i

0Z;(k2,AKk?,J)
—j ddy gd 0 211) V) E 33
E ff y d’ 3J(kif2(y'=Y) Jii, (¥Y'.Y) (33
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Now taking the derivative with respect 8§52(x,x’), we finally obtain

9Z¢(K3,AK%,J)

9Z¢(k2,AK%,J)
_— I—
(9J(2 2)(x x")

(1 1)(X X ) 61k0' (34)

J,3=0

,—
1k}

We consider now the second term in E§1),

k2

9Z:(k3,AK2,J)
fD[Q]exp(—mTrgB-l(Q)[N,(T > Hd“ dYy — g

k,k’ Kk’ (y y)

L+i7;L)5(y—y’)}=— (—+|17

&Z(kz,Akz J)
Z ffdd d f(21) 5Tkk’(211)5(y_y,)

XaTkkr(l 2)5(y Yy )+2(_+|7]

k.’ i (YY)
2( H o 9Z;(k3,AK2,J) (Akz o 0Z4(K5,AK?,J) 35
=2l —+ig| | dy—r——-2i| = +iny f Oy
W ¥y) g 0Y)
|
The derivative with respect t#{}?(x,x’) leads to 27 (K2, AK2.3)
—iAszdy iy —
(9Jk k'(y Y)J( )(Xaxl)
— J,3=0
2 #*Z(k§,Ak?,J S
a2 d¢ f ) 9?Z,(K2,AK2,J)
2 7 yaJ(l (y,y)dIE2(x,x") —iAsz y Fe1 (39
oko 520 YA )|
_ J,J=0
. o"ZZf(kZ,AkZ J) \
+f d yﬁjz l)(y y ' 8 conclusion, the requirement that the term lineawin in
J,J=0 the expansion o; vanishes entails the equation
We expand the remaining term in E@®1), 9Z4(k2,AK2,J) aZ¢(k2,AK?,J)
23Dy ! 51k5_2 (2 2 1kg
1) (XX 1y (0 "
0 4.J=0 33=0
Z f DQlexp(— £)TrgB™H(Q)Q (AR N P2k AR D)
2 k _2 T+I n y (2]_ (1,2 ’
1ol Y)aIGFP(xx)|
AkZ _ J,J=0
X 5T,(TL5(Y—Y)+J()/:Y ))} +2_(Ak2+_ )J« g &22_f(k2,Ak2 J) |
i|—+iny y
2 (1,2 12) ,
-3 WCZCHGE >[5T A1 PN
s 2 - '
WYY v e [ gy PZ0EARD) |
— + V—
0Z¢(k3,Ak%,J f (12 (123 o
__iAsz dd f( 12) ) &Jkoko (yry)Jll (va ) J,j:O
Jiegkr (¥:Y) _
s [ @ty #Z,(k§,AK2,) | @9
— +
0Z¢(k3,Ak?,J f (12 y o/
_iAK? f oy i AT ) @ T gz ) I 0 3o
Y.y

ReplacingZ; everywhere by, using the definition oZ, and

settingko=k{=1, we immediately obtain a Ward identity in
The term proportional ta) is omitted because it does not the form of Eq.(7). Indeed, Eq(34) corresponds to the left-
contribute to the final result. Taking the derivative with re- hand side of Eq(7), whereas Eqs36) and (38) lead to the
spect t0J{'?), we find rhs of Eq.(7).
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V. CONCLUSIONS frequency dependence of the disorder potential for classical
waves suppresses disorder effects altogether. This does not

Wwe have derived a nonlinear supersymma@nmodel for . happen for electrons. This low-frequency domain is not ac-
classical scalar waves. We have shown that in the weak dis:

order limit (ko/>1), the effective Lagrangian of this model cessible to the nonlinear model.
is identical to the one for electrons. In this limit, the main
difference between the wave equations for classical and
Schralinger waves, the frequency dependence of the random
potential, does not lead to different wave behavior. We have V.K. appreciates very useful discussions with Dr. A.
also shown that the Ward identities for classical and forMuller-Groeling and Dr. Y. Fyodorov. V.K. gratefully ac-
Schralinger waves are both fulfilled by the same effectiveknowledges the financial the support of MINERVA. B.E.
Lagrangian. This is due to the different source terms. Outsideishes to thank Dr. A. Miler-Groeling and Professor A.
the regime of weak disorder, i.e., at low frequencies, theNourreddine for valuable discussions.
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